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Abstract
We present the critical exponents νL2, ηL2 and γL for an m-axial Lifshitz point
at second order in an εL expansion. We introduce a constraint involving the
loop momenta along the m-dimensional subspace in order to perform two- and
three-loop integrals. The results are valid in the range 0 � m < d. The case
m = 0 corresponds to the usual Ising-like critical behaviour.

PACS numbers: 7540, 0550, 1110, 6460K, 7540C

Lifshitz multicritical points appear at the confluence of a disordered phase, a uniformly ordered
phase and a modulated ordered phase [1, 2]. The spatially modulated phase is characterized
by a fixed equilibrium wavevector �k0. In this phase, �k0 goes continuously to zero as the system
approaches the Lifshitz point. If this wavevector has m components, the critical system under
consideration presents an m-fold Lifshitz critical behaviour. This sort of critical behaviour
is present in a variety of real physical systems including high-Tc superconductors [3–5],
ferroelectric liquid crystals [6, 7], magnetic compounds and alloys [8–10], among others.

In magnetic systems [11], the m-fold Lifshitz point can be described by a spin- 1
2 Ising

model on a d-dimensional lattice with nearest-neighbour ferromagnetic interactions as well
as next-nearest-neighbour competing antiferromagnetic couplings along m directions. This
system can be described in a field-theoretic setting using a modified φ4 theory with higher-
order derivative terms, which arises as an effect of the competition along the m directions.
The Lifshitz universality class is defined by the parameters (N, d,m), where N is the number
of components of the order parameter, d is the space dimension of the system and m is the
number of competing directions.

Other examples of field theories containing higher derivative terms have been investigated
in different physical scenarios. In cosmology, the recently proposed model known as ‘k-
inflation’ describes inflation driven by higher-order kinetic terms for the inflaton scalar
field [12]. Another instance which arises in quantum field theory in curved spacetime is
the quantization of scalar fields with a high-frequency dispersion relation around a classical
gravitational background [13, 14]. In this case, the higher-order term accounts for deviations
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from Lorentz invariance. The modified dispersion relation might arise from an unspecified
modification of the short-distance structure of spacetime. A further generalization of this
idea is to modify the large-distance structure of spacetime, allowing higher derivative terms,
breaking Lorentz invariance in the infrared regime as well [15]. Thus a better comprehension
of how to calculate arbitrary loop corrections for the Lifshitz critical behaviour should give a
clue about the proper perturbative treatment needed for a general higher-order field theory.

In this paper we generalize the method recently developed for the m = 1 case [16, 17] to
calculate the critical exponents ηL2, νL2 and γL using renormalization group techniques and the
εL-expansion up to O(ε2

L), where εL = 4+ m
2 −d is the expansion parameter in the perturbative

analysis. We recover the results for the m = 1 case obtained in [17] and show for the first time
that the Lifshitz critical behaviour reduces to the Ising-like one for m = 0. Thus, the Ising-like
universality class (N, d) is contained in a nontrivial way in the Lifshitz (N, d,m).

We start with the bare Lagrangian associated with the Lifshitz critical behaviour. It can
be written as a modified φ4 field theory expressed in the following form:

L = 1

2
| �2

m φ0 |2 +
1

2
| �(d−m) φ0 |2 + δ0

1

2
| �m φ0 |2 +

1

2
t0φ

2
0 +

1

4!
λ0φ

4
0 . (1)

The quartic dependence on the momenta along the m directions will be manifest in the
free propagator. Here we will consider the system at the Lifshitz critical point, defined by the
values δ0 = t0 = 0. In order to compute the critical exponents, we need to calculate some
Feynman diagrams, namely I2, I3, I4 and I5 [17, 18]. Setting t0 = δ0 = 0,

I2 =
∫

dd−mq dmk[(
(k + K ′)2

)2
+ (q + P)2

] (
(k2)2 + q2

) (2)

is the one-loop integral contributing to the four-point function,

I3 =
∫

dd−mq1 dd−mq2 dmk1 dmk2(
q2

1 + (k2
1)

2
) (

q2
2 + (k2

2)
2
) [

(q1 + q2 + p)2 +
(
(k1 + k2 + k′)2

)2] (3)

is the two-loop ‘sunset’ Feynman diagram of the two-point function,

I4 =
∫

dd−mq1 dd−mq2 dmk1 dmk2(
q2

1 + (k2
1)

2
) (

(P − q1)2 +
(
(K ′ − k1)2

)2) (
q2

2 + (k2
2)

2
)

× 1

(q1 − q2 + p3)2 +
(
(k1 − k2 + k′

3)
2
)2 (4)

is one of the two-loop graphs which will contribute to the fixed point and

I5 =
∫

dd−mq1 dd−mq2 dd−mq3 dmk1 dmk2 dmk3(
q2

1 + (k2
1)

2
) (

q2
2 + (k2

2)
2
) (

q2
3 + (k2

3)
2
) [

(q1 + q2 − p)2 +
(
(k1 + k2 − k′)2

)2]
× 1

(q1 + q3 − p)2 +
(
(k1 + k3 − k′)2

)2 (5)

is the three-loop diagram contributing to the two-point vertex function. We then choose a
special symmetry point in order to simplify the integrals. We set the external momenta at the
quartic directions equal to zero, i.e. k′ = k′

1 = k′
2 = k′

3 = 0, and K ′ = k′
1 + k′

2. In addition,
for the four-point vertex, the external momenta along the quadratic directions are chosen as
pi ·pj = κ2

4 (4δij−1), wherep1, p2, p3 are the independent external momenta, andP = p1+p2.
We fix the momentum scale of the two-point function through p2 = κ2 = 1. We shall use
normalization conditions for the vertex functions along with dimensional regularization for
the calculation of the Feynman diagrams.



Letter to the Editor L329

Let us find the one-loop integral I2. With our choice of the symmetry point, and introducing
two Schwinger parameters, we obtain for I2∫

dd−mq dmk(
(k2)2 + (q + P)2

) (
(k2)2 + q2

) =
∫ ∞

0

∫ ∞

0
dα1 dα2

(∫
dmk exp(−(α1 + α2)(k

2)2)

)

×
∫

dd−mq exp(−(α1 + α2)q
2 − 2α2q · P − α2P

2). (6)

The �q integral can be performed to give∫
dd−mq exp(−(α1 + α2)q

2 − 2α2q · P − α2P
2)

= 1

2
Sd−m�

(
d − m

2

)
(α1 + α2)

− d−m
2 exp

(
−α1α2P

2

α1 + α2

)
. (7)

For the �k integral we perform the change of variables r2 = k2
1 + · · · + k2

m. Now take z = r4.
The integral turns out to be∫

dmk exp(−(α1 + α2)(k
2)2) =

(
1

4
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)
�

(m

4

)
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− m
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Using equations (7) and (8), I2 reads

I2 = 1

2
Sd−m

(
1

4
Sm

)
�

(
d − m

2

)
�

(m

4

)

×
∫ ∞

0

∫ ∞
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(
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2
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)
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−( d
2 − m
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The remaining parametric integrals can be solved by a change of variables followed by a
rescaling [19]. The integral is proportional to (P 2)−

εL
2 . Now we can set P 2 = κ2 = 1. Using

the identity

�(a + bx) = �(a)
[
1 + b x ψ(a) + O(x2)

]
(10)

where ψ(z) = d
dz ln �(z), one is able to perform the εL-expansion when the gamma functions

have non-integer arguments. Altogether, the final result for I2 is

I2 =
[

1

4
SmSd−m�

(
2 − m

4

)
�

(m

4

)]
1

εL

(
1 + [i2]m εL

)
(11)

where [i2]m = 1 + 1
2 (ψ(1) − ψ(2 − m

4 )). From now on, we shall absorb the factor inside the
brackets in equation (11) in the definition of the coupling constant [18]. Then the redefined
integral is

I2 = 1

εL

(
1 + [i2]m εL

)
. (12)

Now we shall discuss the two- and three-loop integrals. We introduce a constraint among
the loop momenta in different subdiagrams, along the quartic directions only [17]. We wish
to highlight this approximation here by calculating the integral I4 for m 
= 8.

After our choice for the external momenta along the quartic directions, we can write I4 in
the following way:

I4 =
∫

dd−mq1 dmk1(
q2

1 + (k2
1)

2
) (

(P − q1)2 + (k2
1)

2
)

∫
dd−mq2 dmk2(

q2
2 + (k2

2)
2
) [

(q1 − q2 + p3)2 + ((k1 + k2)2)2
]
(13)
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where we have changed variables from k2 → −k2. We integrate first over the subdiagram
q2, k2. In order to integrate over �k2 we introduce a constraint relating �k1 to �k2 inside this
subdiagram; i.e., �k1 is fixed into the second integral in equation (13). If the relation between
the two loop momenta is of the form �k1 = −α �k2 we can solve the integral in terms of a
product of gamma functions and a hypergeometric function. The value α = 2 is singled
out when we demand that the integral is given in terms of gamma functions only. This is a
natural generalization of the m = 1 case [17]. Using Schwinger’s parametrization and setting
�k1 = −2�k2 in the second integral in equation (13) we find

I4 = I2

∫
dd−mq1 dmk1(

q2
1 + (k2

1)
2
) (

(P − q1)2 + (k2
1)

2
) 1[

(q1 + p3)2
] εL

2

. (14)

Performing the integral over k1 we obtain

I4 = I2

∫ 1

0
dz

∫
dd−mq1(

q2
1 − 2z P · q1 + zP 2

)2− m
4
[
(q1 + p3)2

] εL
2

. (15)

Using a Feynman parameter the integral turns out to be

I4 = 1

2
I2

(
1 − εL

2
ψ

(
2 − m

4

))
�(εL)

�
(
εL
2

)
∫ 1

0
dy y1− m

4 (1 − y)
1
2 εL−1

×
∫ 1

0
dz

[
yz(1 − yz)P 2 + y(1 − y)p2

3 − 2yz(1 − y)p3 · P ]−εL
. (16)

The integral over y is singular at y = 1 when εL = 0. We only need to replace the value y = 1
inside the integral over z [17, 18], and integrate over y afterwards, obtaining

I4 = 1

2ε2
L

(
1 + 3 [i2]mεL

)
. (17)

The integrals I ′
3 and I ′

5 can be solved using a similar reasoning. They are given by

I ′
3 = − 1

8 − m

1

εL

[
1 +

(
[i2]m +

3

4 − m
2

)
εL

]
(18)

I ′
5 = − 1

3
(
2 − m

4

) 1

ε2
L

[
1 + 2

(
[i2]m +

1

2 − m
4

)
εL

]
. (19)

Note that the leading singularities for I2 and I4 are the same as their analogous integrals
in the pure φ4 theory. However, I ′

3 and I ′
5 do not have the same leading singularities for they

include a factor of 1
(2− m

4 )
. We then introduce a weight factor for I ′

3 and I ′
5, namely (1 − m

8 ), so

that they have the same leading singularities as in the pure φ4 theory. This has the advantage of
allowing a smooth transition to the Ising-like case (m = 0) from the general Lifshitz anisotropic
critical behaviour (m 
= 8) as we shall see next.

The fixed point at two-loop level is given by

u∗ = 6

8 + N
εL

{
1 + εL

[(
4(5N + 22)

(8 + N)2
− 1

)
[i2]m − (2 + N)

(8 + N)2

]}
. (20)

With this fixed point one readily obtains the critical exponents ηL2 and νL2:

ηL2 = 1

2
ε2

L
2 + N

(8 + N)2
+ ε3

L
(2 + N)

(8 + N)2

[(
4(5N + 22)

(8 + N)2
− 1

2

)
[i2]m +

1

8 − m
− 2 + N

(8 + N)2

]

(21)

νL2 = 1

2
+

1

4
εL

2 + N

8 + N
+

1

8

(2 + N)

(8 + N)3

[
2(14N + 40) [i2]m − 2(2 + N) + (8 + N)(3 + N)

]
ε2

L.

(22)
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Using the scaling law γL = νL2(2 − ηL2), the exponent γL is

γL = 1 +
1

2
εL

2 + N

8 + N
+

1

4

(2 + N)

(8 + N)3

[
12 + 8N + N2 + 4 [i2]m (20 + 7N)

]
ε2

L. (23)

It should be emphasized that [i2]m is a universal amount, for the dependence on m is
encoded in such a quantity. The parameter m only appears in a explicit way in the O(ε3

L)

contribution to the index ηL2. To our knowledge, the explicit dependence on m is obtained for
the first time at O(ε3

L) for ηL2. When setting (m = 1) in the formulae above, we recover the
exponents previously reported in [17]. As discussed there, the two-loop calculation (N = 1)
in three dimensions yields γL = 1.45, in a nice agreement with the numerical Monte Carlo
simulation γL = 1.4 ± 0.06.

The amazing fact obtained using the method outlined here is that the critical exponents
reduce to the Ising-like ones when m = 0, for εL → ε = 4 − d. This means that the
universality class for the m-fold Lifshitz point includes the Ising-like one for this particular
value of m in a nontrivial way. This provides a unified description of the anisotropic Lifshitz
critical behaviour (m 
= 8, d 
= m). This is the first time that an isotropic behaviour (m = 0)
has been recoverable from the most general anisotropic Lifshitz criticality.

Note that our result for the exponent ηL2 is in agreement with Mukamel’s [20] at O(ε2
L) and

is independent of m at this order. It should not be surprising that the approach fails to describe
the d = m = 8 case, for the exponent ηL2 is divergent as can be seen from equation (21).
The approximation made is not suitable for general isotropic cases d = m 
= 8 as well, since
there is no longer any preferred direction. Another treatment should be employed to obtain
information along the m-dimensional competition axes, since the symmetry point used here is
not suitable to find quantities along the competing directions.

All the results in this paper follow from expanding the theory around its upper critical
dimension. The constraint introduced along the m-dimensional subspace is equivalent to
expanding around the theory without competition, by varying the space dimension d, with
m kept fixed. This is the main difference between the approach described here and other
proposals [21–23]. The first calculation for the critical index ηL2 for general m(
=d) was
performed [20] using the method of momentum shell integration based on the Hamiltonian
formalism. Later [21], the computation of this critical index for the m = 2, 6 cases was done
using a cutoff in coordinate space. It turned out that the two results do not agree. Recently, a
different field-theoretic method has been proposed, based on the perturbative expansion around
the number of the m competing directions [22] using dimensional regularization. Another
technique using test functions on coordinate space together with dimensional regularization
was developed in [23]. The three latter methods rely, in one way or another, on coordinate space
computations. We believe that this is why they all agree among each other for the m = 2, 6
cases. On the other hand, the two different evaluations performed entirely in momentum
space, namely Mukamel’s and ours, yielded the same results. This suggests that calculations
performed in momentum space and coordinate space are inequivalent, as far as the Lifshitz
critical behaviour is concerned. The reason for this disagreement is not known.

To conclude, we have calculated the critical exponents associated with correlations along
the (d − m) directions perpendicular to the competition axes. This was possible because we
introduced a constraint between the quartic loop momenta appearing in different subdiagrams
in higher-loop Feynman graphs. The Lifshitz universality class turns out to reduce to the Ising-
like one for the value m = 0 at least up to the loop order considered in this paper. In principle,
the technique can be readily generalized to analyse general anisotropic Lifshitz type critical
behaviour with arbitrary powers of the Laplacian in the competing directions. The study of
the tricritical Lifshitz points using this formalism is also worthwhile.
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